p(d)+A collisions at LHC and RHIC

Julia Velkovska

VANDERBILT UNIVERSITY
Relativistic Heavy Ion Collisions Goals

Study the phases of QCD
- the structure
- thermodynamics properties
- Emergent behaviors
- Search for critical point

pA or dA collisions
- No QGP?
- Cold vs hot QCD matter
- Initial vs final state effects
Key Discoveries in AA collisions at RHIC

Physics Today, May 2005

$\eta \lessgtr \frac{\hbar}{4\pi k_B}$

$\text{Au+Au } \sqrt{s_{\text{NN}}} = 200 \text{GeV, 0-10\%}$

PHENIX preliminary

R_A

V_2/n

$K^+ + K^-$ (PHENIX) $\Lambda + \bar{\Lambda}$ (STAR)

π^0 (PHENIX) ϕ (STAR)

d (PHENIX)

$\pi^+ + \pi^-$ (PHENIX) $p + \bar{p}$ (PHENIX)

π^0 (PHENIX) $\Lambda + \bar{\Lambda}$ (STAR)

$K^+ + K^-$ (PHENIX) $\Xi^- + \Xi^+$ (STAR)

K_S^0 (STAR) ϕ (STAR)

K_S^0 (STAR) ϕ (STAR)
d+Au in 2003: No jet quenching in d+Au hints of saturation at forward η (small x)

PHENIX

- R_A vs. p_T (GeV/c)
 - Charged hadrons
 - Neutral pions

PHOBOS

- R_{dAu} vs. p_T (GeV/c)
 - 70-100%
 - 40-70%
 - 20-40%
 - 0-20%

BRAHMS

- Nuclear Modification Factor
- $d+Au$ (MB)
- $Au+Au$ (0-10%)

STAR

- $(1/N_{\text{trigger}}) dN/d\phi$ vs. $\Delta\phi$ (degrees)
 - $Au+Au$ Central
 - $d+Au$ Central
 - $p+p$ Minimum Bias
d+Au in 2003

- Paradigm confirmed!
- Jet quenching is caused by the hot medium (final state effect)
- d+Au is a “control” system
A new look 10 years later

• $p+Pb$ at the LHC and higher statistics $d+Au$ in 2008
 – Look closer at the soft sector
 – Further reach with hard probes
 • EWK bosons
 • Jets and high-pt hadrons
 • Heavy flavor
 • Quarkonia
pPb collisions could be violent!

- 418 charged particles detected!

Are there correlations between the particles?
Given enough particles (about 50), we find ridges everywhere ...

CMS pPb $\sqrt{s_{NN}} = 5.02$ TeV, $N_{\text{offline}}^{\text{trk}} \geq 110$

$1 < p_T < 3$ GeV/c

PLB 718 (2013) 795
Azimuthal anisotropies in AA collisions

Flow harmonics probe the system at different length scales
Taken together: constrain fluctuations and viscosity of QGP
Even-by-event hydro: The effect of viscosity

average, then evolve

initial energy density

initial energy density

evolve, then average

initial

ideal

viscous

energy density in the transverse plane

Even-by-event hydro: The effect of viscosity

- Presently:
 - large uncertainty in the initial conditions
 - Limiting factor for precise determination of η/s
 - EIC will help establish the initial state

Questions to address from pA and dA

• What is the origin of the ridge in small systems?
 – Collective flow?
 – Quantum interference of gluons (CGC)?
 – … or something else?

• What are the initial state fluctuations?

• Methods:
 – Compare 2- and multi-particle correlations in different collision systems
 – multiplicity dependence
 – Particle species dependence
 – Study high-order harmonics
Multiparticle correlations

• v_2 stays large when calculated with multi-particles
 - $v_2(4) \neq v_2(2)$ (non-flow, fluctuations…)

![Graph showing v_2 vs. N_{trk} for PbPb and pPb collisions with event multiplicity criteria.](image)
Multiparticle correlations

- v_2 stays large when calculated with multi-particles
 - $v_2(4) = v_2(6) = v_2(8) = v_2(LYZ)$ within 10%
 - True collectivity in pPb collisions!
p(d)A: Particle species dependence of v_2

Clear mass ordering
Similar to AA
Compatible with expectation from hydro
Higher harmonics: pPb vs PbPb

ATLAS Preliminary

V_2 vs p_T [GeV]

V_3 vs p_T [GeV]

V_4 vs p_T [GeV]

Julia Velkovska (Vanderbilt)
EIC user meeting, June 24-26, 2014
Hard probes

In AA: large dijet and γ-jet momentum imbalance
The R_{AA} collection

$$R_{AA} = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{d^2N_{AA}}{dp_T d\eta} / \frac{d^2N_{pp}}{dp_T d\eta} \sim \frac{\text{“QCD medium”}}{\text{“QCD vacuum”}}$$

Colorless probes unsuppressed; hadrons and jets - modified
Less b-hadron suppression at low p_T; b-jets - similar to q/g jets
• Excess at backward rapidity in the Pb-going beam direction
• Consistent with nPDF predictions
• EIC will provide information about the sea quark distributions
W$^+$ and W$^-$ in pPb

Showing small deviations from unmodified PDFs
– A hint of a different u/d modification? (not in EPS09)
Unmodified jet energy in pPb

- Jet energy is essentially unmodified in pPb
 - As seen for instance in gamma-jet correlations
 - \(R_{J\gamma} \) = fraction of photons with a jet of \(p_{T\text{jet}} > 30 \) GeV

\[
R_{J\gamma} = \frac{\text{fraction of photons with a jet of } p_{T\text{jet}} > 30 \text{ GeV}}{\text{total number of photons}}
\]
Jets and dijets in pPb

ATLAS preliminary

CMS preliminary

minimum-bias p-Pb $\sqrt{s_{NN}} = 5.02$ TeV
charged jets ALICE Preliminary
anti-k_T $R=0.4$, $|\eta_{\text{lab}}|<0.5$
charged hadrons, NSD, $|\eta_{\text{cms}}|<0.3$

normalization uncertainty reference + Glauber (charged jets)

anti-k_T(PFlow) $R=0.3$
$\Delta\phi_{1,2} > 2\pi/3$, $|\eta|<3$

$E_{T}[E_{T}^{\text{HF}}[n]>4]$ (GeV)
Jets and dijets in pPb

No significant modifications of jets are seen

Can we access the initial state?
How to get to different x values?

- Dijet η distribution correlated with parton x from Pb

Graphs and Diagrams:
- CMS Preliminary pPb 31 nb$^{-1}$
- Min. bias
- Large x from nucleus
- Small x
- EMC
- Anti-shadowing
- Shadowing
How to get to different x values?

The shape of the distribution evolves with event activity.
What can we learn about nPDF?

- pp PDF ruled out by shape of dijet η distribution
- Good agreement with EPS09 nPDF predictions

CMS pPb 35 nb$^{-1}$

$\sqrt{s_{NN}} = 5.02$ TeV

- $p_{T,1} > 120$ GeV/c
- $p_{T,2} > 30$ GeV/c
- $\Delta\phi_{1,2} > 2\pi/3$
- All $E_T^{4<|\eta|<5.2}$

arXiv: 1401.4433
What to expect for hadron R_{pPb}?

$pPb \sqrt{s_{NN}} = 5.02$ TeV

Helenius et al., JHEP 1207 (2012) 073

Smaller Q^2 and x
Large Q^2 and x
The R_{pPb} data!

The R_{pPb} data is shown in the graph. The pp reference is interpolated from lower and higher energy data.

CMS-PAS-HIN-12-017

Anti-shadowing: larger than predicted although, with large systematic uncertainty.

- N_{coll}
- Correlated
- Partially correlated 10% from pp reference

The graph shows:
- p_{T} [GeV/c] on the x-axis
- R_{pPb} ($|\eta_{CM}| < 1$) on the y-axis

Key points:
- Smaller Q^2 and x
- Large Q^2 and x

CMS Preliminary

$N_{coll}=6.9$
• Same conclusion from CMS and ATLAS; tension with ALICE (mainly) in pp reference. **We need pp data at 5 TeV !**
Look for asymmetry in hadron yield vs η_{cm}

$$Y_{\text{asym}} = \frac{\text{Yield Pb-going}}{\text{Yield p-going}}$$

Small x from Pb in denominator
Large Q^2 and x
Increase in shadowing region
Small change in antishadowing

CMS-PAS-HIN-12-017
At lower p_T: baryon enhancement

Significant baryon enhancement in dAu and pPb

and

Universal behavior in peripheral AuAu and central dAu
Enhancement at RHIC (looks like flow)
Smaller or no effect at LHC

EIC can help elucidate heavy quark propagation through cold nuclear matter
Quarkonia: PbPb, pPb and event activity

The suppression of 5 quarkonia observed in PbPb
Well-ordered with binding energy
Inclusive bottomonia
Charmonia $p_T > 6.5$ GeV
+ p_T-inclusive J/ψ from ALICE
less suppressed than at RHIC, calling for recombination

Interesting behavior vs event activity in all collision systems
What is the correct reference for PbPb collisions?
EIC - will help?
Conclusions

- dA and pA collisions have proven to be:
 - interesting in their own right
 - Not quite “control experiment”
- Many indications from soft physics for similar behavior in AA and p(d)A

EIC will provide information for the initial state of the fluid evolution and thus - better define the QGP properties

- Some nuclear modifications are present in the hard sector

EIC will provide information on:
 - Sea quark and gluon distributions
 - Heavy quark propagation through nuclear matter
Implications for E loss in PbPb?

Julia Velkovska (Vanderbilt)

EIC user meeting, June 24-26, 2014
Other hints of collective effects?

Inverse slope of m_T distributions, T_{slope}:

$$\frac{1}{m_T} \frac{dN}{dm_T} \sim \exp\left(-\frac{m_T}{T_{\text{slope}}} \right)$$

Inverse slope increases with particle mass and with multiplicity. Reminiscent of radial flow.