Focus on physical system
Components probed at different energies
Unifying perspective large x — small x

Complementarity & synergies
Mutual benefits from broad coverage
Global questions: QCD evolution, angular momentum

- **3D nucleon structure**
 Valence quarks \rightarrow sea quarks, gluons
 Spin/flavor densities
 Spatial distributions
 Orbital motion

- **Color fields in nuclei**
 Local properties \rightarrow coherent fields
 Quarks/gluons in bound nucleon
 Coherence, shadowing, saturation

- **Other topics**
 Hadrons from color charge:
 Fragmentation, medium effects
 Electroweak probes
Energy–luminosity frontier

[Summary plot 4/2014]

JLab12 and **EIC** extend luminosity frontier in different energy regions

- **Scattering energy**
 - Resolution scale $1/Q$
 - Light-cone fraction x: Target configurations, types of constituents

- **Luminosity**
 - Exceptional configurations, rare processes
 - Multi-variable final states
 - Polarization effects
Nucleon: QCD structure

- Relativistic many-body system

 Particle number changes with energy and resolution scale!

 JLab 12 GeV: Valence quark component, incl. $x \rightarrow 1$

 EIC: Sea quarks, gluons, scale dependence

- Physical characteristics

 Quark/gluon number densities, incl. spin and flavor dependence PDFs

 Transverse spatial distributions GPDs

 Orbital motion TMDs

 Multiparticle correlations GPDs

 Learn about dynamics!

 Densities with operator definition $\langle N | \text{QCD–Op} | N \rangle$

 Calculable with non-perturbative methods, LQCD
Nucleon: Valence quark polarization

- How are valence quarks in nucleon polarized at $x \rightarrow 1$?
 - Basic $3q$ component of nucleon wave fn
 - Non-perturbative QCD interactions?
 - Orbital angular momentum $L = 1$?
 - Poorly constrained by present data

- Present data
 - JLab12 proj.
 - Combination of energy and luminosity!
 - Many more applications: Spatial imaging, orbital motion

- JLab12: Map u, d quark polarization precisely up to $x \sim 0.8$
 - Inclusive DIS with p and n targets

- What about gluons at large x?
 - 30% of momentum carried by gluons at $Q^2 \sim 0.5 \text{ GeV}^2$
Nucleon: Sea quark polarization

- How are sea quarks polarized?
 Non-perturbative QCD interactions connecting valence ↔ sea quarks?
 Flavor asymmetry related to mesonic degrees of freedom?
 “Pion cloud”
 First hints of $\Delta \bar{u} > \Delta \bar{d}$ from RHIC W^\pm

- EIC: Map sea quark spin/flavor distributions with semi-inclusive DIS
 Tag charge/flavor of struck quark
 High energy ensures independent fragmentation of struck quark;
 luminosity for multi-dimensional binning
 Measure also quark fragmentation functions: Unfavored vs. favored
 Universal, can be used also for large x
Nucleon: Gluon polarization

- How do gluons respond to nucleon spin?
 - Origin of non-perturbative gluon fields?
 - Gluon contribution to nucleon spin?
 - Orbital angular momentum?

Constrained by Q^2 dep. of $g_1(x, Q^2)$, hard processes in $p\bar{p}$ EMC/SMC, SLAC, HERMES, COMPASS, JLab 6/12 GeV. RHIC Spin

- EIC: Definitive measurement of gluon polarization in inclusive DIS
 - Wide kinematic coverage enables study of Q^2 evolution

- Synergies EIC ↔ JLab12
 - Global QCD fits incl. large-x data
 - JAM Collaboration: Melnitchouk et al.
 - Orbital angular momentum

M. Stratmann, INT Workshop 2010
Nucleon: Spatial distributions

- How are quarks/gluons distributed in transverse space?

 Fundamental size and “shape” of nucleon in QCD

 Leading-twist, calculable in LQCD

 Distributions change with x:

 Chiral dynamics, QCD radiation

 Hard exclusive processes $\gamma^* N \rightarrow M + N$:
 GPDs \equiv partonic form factors of nucleon

- JLab12: Valence quark imaging with exclusive processes

 DVCS $\gamma^* N \rightarrow \gamma + N$: Extensive program, GPDs from polarization observables

 Mesons: Quark transversity with π^0/η, large-x gluons with ϕ

 Precise observables, but limited phase space

Reaction mechanism? Leading \leftrightarrow higher twist?
Nucleon: Spatial distributions

- **EIC**: Quark/gluon imaging at $x < 0.1$

 J/ψ: Gluon imaging. Clean probe. Input for saturation models, multiparton interactions in $pp@LHC$

 DVCS: Quarks/gluons, polarization
 Dispersion analysis, model-independent
 Combination of JLab12 and EIC data

 Light mesons: Non-singlet quarks π^+, π^0 polarized quarks
 ρ^+, K^{*+} flavor non-singlet
 Selective, unique, never measured!

- **Synergies JLab12 ↔ EIC**

 Wide coverage helps to unravel exclusive reaction mechanism

 x, Q^2 evolution of transverse distributions

 Global analysis of DVCS data
Nucleon: Orbital motion

- Transverse motion of quarks/gluons?

 Non-pert. dynamics, spin-orbit forces, orbital angular momentum?

 Observable hadron $P_{T,h}$ compounded from intrinsic k_{T} of quark, QCD radiation, fragmentation process: How separate?

 Theoretical progress: TMD factorization, evolution

- JLab12: Semi-incl DIS in valence region

 Precise observables, but limited phase space

- EIC: Wide kinematic range for SIDIS

 QCD–based mechanism, low \rightarrow high $P_{T,h}$

 Q^2 evolution, QCD radiation

 Target fragmentation and correlations: New information on nucleon structure!

- Synergies JLab12 \leftrightarrow EIC
Nuclei: Color fields

- Small–size probe of color fields
 Color fields change with energy and probe size!

- JLab 12: Coherence length short
 Quark structure of bound nucleon
 Short–range NN correlations, $x > 1$

- EIC: Wide range of probe size and coherence length
 Nuclear sea quarks and gluons
 Collective color fields in nuclei:
 Shadowing, diffraction
 High gluon densities, saturation

Explore short-range nuclear structure and coherent QCD phenomena!
Nuclei: Bound nucleon structure

- How are the nucleon’s quark/antiquark distributions modified in the nucleus?

 Modification caused by “mean field” or short–range NN correlations?

 QCD origin of NN interaction?

- JLab 6/12 GeV: Inclusive $eA \rightarrow e' + X$

 σ_A/σ_D ratio shows modification

 Spectator tagging $eA \rightarrow e' + N + X$:
 Short-range correlations?

 Spin/isospin dependence:
 Polarized nuclei, different A

- Other measurements

 SRCs with $x > 1$, quasi-elastic $e(e'N)X$

Extended measurements with 12 GeV
Nuclei: Sea quarks, gluons, coherence

- **EIC: Nuclear quark and gluon densities**

 Sea, gluons poorly known!

 Wide coverage in x, Q^2

 Synergies 12 GeV – EIC: Normalization of nuclear cross sections, global QCD fits

- **Shadowing at $x \ll 0.1$**

 Coherent scattering from $N > 2$ nucleons

 Fundamental QCD prediction, related to diffraction

 Important for understanding approach to saturation at small x
Nuclei: Final states

- Spectator tagging $D(e, e'p)X$
 Neutron structure, bound nucleon
 JLab12: Unpolarized D, CLAS BONUS detector
 EIC: Polarized D, forward p/n detection
 Great potential! JLab 2014 LDRD project → Talk Kijun Park

- Coherent nuclear processes $A(e, e'M)A$
 JLab12: GPDs of light nuclei, matter distribution
 EIC: Impact parameter dependent shadowing
 Guzey et al.; Kowalski, Caldwell 09. Heavy nuclei very challenging

- Color transparency in meson production
 Fundamental prediction of QCD!
 JLab12: Hadron formation inside nucleus, onset of color transparency
 EIC: Wide range of formation length and probe size, detailed CT studies
 Complement saturation experiments: “Disappearance” at high Q^2
Summary

- JLab 12 and EIC complementary

 JLab12: Valence quark region in eN; single–nucleon structure in eA

 EIC: Sea quarks, gluons, Q^2 dependence in eN; coherent fields in eA

- Synergies in global physics questions

 GPDs/TMDs: Wide range of EIC will establish/refine QCD–based description; physics analysis with both JLab12 ($x > 0.1$) and EIC data

 Orbital angular momentum: Form factors/large–x PDFs from JLab12, inclusive ΔG from EIC

 Nuclear structure functions: x, Q^2 dependence from EIC; normalization from JLab12 and other expts

 . . . more examples!

- JLab Users increasingly involved in EIC R&D

 Natural next step after JLab12