Matter Waves

De Broglie: the dual (wave-particle) behavior of radiation applies to matter (symmetry of nature)

• A photon (zero rest mass particle) has a light wave associated with it that governs its motion
• A particle with non-zero rest mass has an associated matter wave that governs its motion.
Matter Waves

De Broglie: the total energy of an entity E (momentum p) is related to the frequency ν (wavelength λ) of the wave associated with its motion:

\[E = h\nu, \quad p = h/\lambda \]

predicts the de Broglie wavelength λ of a matter wave associated with the motion of a particle with momentum p.

\[h \approx 6.6 \times 10^{-34} \text{ J} \cdot \text{s} \]

\[J = \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2} \]

Thompson (1927) – diffraction of electron beams passing through thin films and independently confirmed the de Broglie relation.
Question:

What’s the de Broglie’s wavelength λ (in meters) defined as $\lambda = h/p$ of a baseball of 1kg moving at a speed of 10m/s?

a) Calculate it or b) use an online calculator.

Hint for a) : This is a non-relativistic case: $v << c \Rightarrow p = mv$

\[h \approx 6.6 \times 10^{-34} \text{ J} \cdot \text{s} \]

\[J = \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2} \]
Question:

What’s the de Broglie’s wavelength λ (in meters) defined as $\lambda = \frac{h}{p}$ of a baseball of 1kg moving at a speed of 10m/s?

a) Calculate it or b) use an online calculator.

Hint for a) : This is a non-relativistic case: $v << c \implies p = mv \implies h = 6.6 \times 10^{-34} J \cdot s$

The wave nature of light/matter propagation is not revealed by experiments when the important dimensions of the apparatus used are very large compared to the wavelength of light/matter.
Non-zero mass particles
e.g. electrons, protons

\[
m_0 \neq 0
\]

\[
E^2 - p^2 c^2 = \left(m_0 c^2 \right)^2
\]

\[
\nu \lambda = v_p \neq c
\]
Phase velocity

Particle

\[
m_0 \neq 0
\]

\[
E = h \nu
\]

\[
p = h/\lambda
\]

Associated wave

De Broglie